夏亦犁

发布者:赵安明发布时间:2018-04-23浏览次数:30678

职称:教授,博士生导师

办公室:江宁无线谷A5-402

办公电话:025-84980409

Emailyili_xia@seu.edu.cn

学习经历:

20029-20066东南大学信息科学与工程学院学士

20069-20078英国帝国理工学院电气与电子工程系硕士

20079-20116英国帝国理工学院电气与电子工程系博士

工作经历:

20119-201212英国帝国理工学院电气与电子工程系博士后

20131-20194东南大学信息科学与工程学院副教授

20195-至今东南大学信息科学与工程学院教授

教授课程:

盲信号处理导论(研讨)-- 本科三年级

研究方向:

统计信号处理、多维信号处理、自适应信号处理、人工智能、大数据分析、信号处理在无线通信及电力中的应用

获奖情况:

1、2019IEEE信号处理年会(ICASSP’19)教育创新奖

2、2018年东南大学至善青年学者

3、2014年江苏省双创人才

4、2010年国际神经网络研讨会(ISNN’10) 最优论文奖

论文著作:

已发表学术论文80余篇。担任国际权威SCI期刊IEEE Transactions on Signal Processing   Associate Editor副编辑。

SCI期刊论文:

[1] Y. Xia, B. Zhang, W. Pei, and D. P.   Mandic, “Bidimensional multivariate empirical mode decomposition with   applications in multi-scale image fusion,” IEEE ACCESS, vol.7, pp.   114261-114270, 2019.

[2] M. Xiang, Y. Xia, and D. P.   Mandic, “ Complementary cost functions for complex and quaternion widely linear   estimation,”   IEEE Signal Processing Letters, vol. 26, no. 11, 2019.

[3] Y. Xia, S. Tao, Z. Li, M. Xiang,   W. Pei, and D. P. Mandic, “Full mean square performance bounds on quaternion   estimators for improper data,” IEEE   Transactions on Signal Processing, vol. 67, no. 15, pp. 4093-4106, 2019.

[4] X. Zhang, Y. Xia, C. Li, L.   Yang, and D. P. Mandic, “Analysis of the unconstrained frequency-domain block   LMS for second-order noncircular inputs”   IEEE Transactions on Signal Processing, vol. 67, no. 15, pp. 3970-3984, 2019.

[5] S. Kanna, A. Moniri, Y. Xia, A. G.   Constantinides, and D. P. Mandic, “A data analytics perspective of power grid   analysis-Part 2: Teaching old power systems new tricks,” IEEE Signal Processing Magazine, vol. 36, no. 3,   pp. 110-117, 2019.

[6] D. P. Mandic, S. Kanna, Y. Xia,   A. Moniri, A. Junyent-Ferre, and A. G. Constantinides, “A data analytics   perspective of power grid analysis-Part 1: The Clarke and related   transforms,” IEEE Signal Processing   Magazine, vol. 36, no. 2, pp. 110-116, 2019.

[7] H. Cheng, Y. Xia, Y. Huang, L.   Yang, and D. P. Mandic, “Joint channel estimation and Tx/Rx I/Q imbalance   compensation for GFDM systems,” IEEE   Transactions on Wireless Communications, vol. 18, no. 2, pp. 1304-1317, 2019.

[8] W. Deng, Z. Li, Y. Xia, K. Wang,   and W. Pei, “A widely linear MMSE anti-collision method for multi-antenna   RFID readers,” IEEE Communications Letters,   vol. 23, no. 4, pp. 644-647, 2019.

[9] D. Pei and Y. Xia, “Robust power   system frequency estimation based on a sliding window approach,” Mathematical Problems in Engineering, vol. 2019,   pp. 1-10, 2019.

[10] Z. Li, Y. Xia, W. Pei, and D.   P. Mandic, “A cost-effective nonlinear self-interference canceller in   full-duplex direct-conversion transceivers,” Signal Processing, vol. 158, pp. 4-14, 2019.

[11] Z. Li, Y. Xia, Q. Wang, W. Pei   and J. Hao, “A novel four-point model based unit-norm constrained least   squares methods for single-tone frequency estimation,” IEICE Transactions on   Fundamentals of Electronics, Communications and Computer Sciences, vol.   E102-A, no. 2, pp. 404-414, 2019.

[12] G. L. Nefabas, H. Zhao, and Y. Xia,   “ Robust frequency estimation of unbalanced power system using a   phase angle error based least mean kurtosis algorithm,” International   Journal of Electrical Power and Energy Systems, vol. 110, pp. 795-808, 2019.

[13] Y. Xia and D. P. Mandic, “ Augmented performance bounds on strictly linear and   widely linear estimators with complex data,” IEEE Transactions on Signal Processing,   vol. 66, no. 2, 2018.

[14] Z. Li, Y. Xia, W. Pei, K. Wang,   and D. P. Mandic, “An augmented nonlinear LMS for digital self-interference   cancellation in full-duplex direct conversion transceivers,” IEEE   Transactions on Signal Processing, vol. 66, no. 15, pp. 4065-4078, 2018.

[15] H. Cheng, Y. Xia, Y. Huang, L.   Yang, and D. P. Mandic, “A normalized complex LMS based blind I/Q imbalance   compensator for GFDM receivers and its full second-order performance   analysis,” IEEE Transactions on Signal Processing, vol. 66, no. 17, pp.   4701-4712, 2018.

[16] Y. Xia, S. Kanna, and D. P.   Mandic, “Maximum likelihood parameter   estimation of unbalanced three-phase power signals,” IEEE Transactions   on Instrumentation and Measurement, vol. 67, no. 3, pp. 569-581, 2018.

[17] Y. Xia, S. C. Douglas, and D.   P. Mandic, “ Performance analysis of   the deficient length augmented CLMS algorithm for second order noncircular   complex signals,” Signal Processing, vol. 144, pp. 214-225, 2018.

[18] Y. Xia, S. C. Douglas, and D.   P. Mandic, “A perspective on CLMS as a deficient length augmented CLMS:   Dealing with second-order noncircularity,” Signal Processing, vol. 149, pp. 236-245,   2018.

[19] M. Xiang, S. Enshaeifar, A. E. Stott,   C. Cheong-Took, Y. Xia, S. Kanna, and D. P. Mandic, “Simultaneous   diagonalization of the covariance and complementary covariance matrices in   quaternion widely linear signal processing,” Signal Processing, vol. 148, pp.   193-204, 2018.

[20] K. Wang, J. Ding, Y. Xia, X. Liu,   J. Hao and W. Pei, “Two high accuracy frequency estimation algorithms based   on new autocorrelation-like function for noncircular/sinusoid signal,” IEICE   Transactions on Fundamentals of Electronics, Communications and Computer   Sciences, vol. E101-A, no. 7, pp. 1065-1073, 2018.

[21] Y. Xia and D. P. Mandic, “A full mean square analysis of CLMS for second   order noncircular inputs,” IEEE Transactions on Signal Processing, vol. 65,   no. 21, pp. 5578-5590, 2017.

[22] Y.   Xia and D. P. Mandic, “Complementary mean square analysis of augmented   CLMS for second-order noncircular Gaussian signals,” IEEE Signal Processing   Letters, vol. 24, no. 9, pp. 1413-1417, 2017.

[23] Y.   Xia, Y. He, K. Wang, W. Pei, Z. Blazic, and D. P. Mandic, “A complex least squares   enhanced smart DFT technique for power system frequency estimation,”   IEEE Transactions on Power Delivery, vol. 32, no. 3, pp. 1270-1278, 2017.

[24] Z.   Li, Y. Xia, W. Pei, Y. Huang, and D. P. Mandic, “Noncircular   measurement and mitigation of I/Q imbalance for OFDM-based WLAN transmitters,”   IEEE Transactions on Instrumentation and Measurement, vol. 66, no. 3, pp.   383-393, 2017.

[25] D.   Xu, Y. Xia, and D. P. Mandic, “Optimization in quaternion dynamic   systems: Gradient, Hessian, and learning algorithms,” IEEE Transactions on   Neural Networks and Learning Systems, vol. 27, no. 2, pp. 249-261, 2016.

[26] J.   Hao, W. Pei, K. Wang, Y. Xia, and C. Pu, “Iterative optimal design for fast filter bank with low   complexity,” IEICE Transactions on Fundamentals of Electronics, Communications   and Computer Sciences, vol. E99-A, no. 2, pp. 638-642, 2016.

[27] J.   Hao, K. Wang, W. Pei, and Y. Xia, “Baseband signal processing of digital phosphor technology   with high accuracy,” IEICE Electronics Express, vol. 13, no. 2, pp. 1-7, 2016.

[28] J. Hao, W. Pei, K. Wang, and Y. Xia,   “ Two-stage iterative design   for fast filter bank with low complexity,” Electronics Letters, vol. 52, no. 4, pp.   287-289, 2016.

[29] Y.   Xia, C. Jahanchahi, and D. P. Mandic, “Quaternion-valued echo state   networks,” IEEE Transactions on Neural Networks and Learning Systems, vol.   26, no. 4, pp. 663-673, 2015.

[30] S.   Kanna, D. H. Dini, Y. Xia, S. Y. Hui, and D. P. Mandic, “Distributed widely linear Kalman filtering for frequency   estimation in power networks,” IEEE Transactions on Signal and Information   Processing over Networks, vol. 1, no. 1, pp. 45-57, 2015.

[31] Y. Xia, Z. Blazic, and D. P.   Mandic, “Complex-valued   least squares frequency estimation for   unbalanced power systems,” IEEE Transactions on Instrumentation and Measurement,   vol. 64, no. 3, pp. 638-648, 2015.

[32] Y. Xia, C. Jahanchahi, T. Nitta, and   D. P. Mandic, “Performance bounds of quaternion estimators,” IEEE Transactions   on Neural Networks and Learning Systems, vol. 26, no. 12, pp. 3287-3292,   2015.

[33] J. Hao, W. Pei, Y. Xia, and K. Wang,   “Adaptive pulse signal shaping of tag response signal for RFID tag test   system,” Electronics Letters, vol. 50, no. 17, pp. 1182-1184, 2014.

[34] Y. Xia and D. P. Mandic, “A widely linear least mean phase algorithm for adaptive   frequency estimation of unbalanced power systems,”   International Journal of Electrical Power and Energy Systems, vol. 54, pp.   367-375, 2014.

[35] Y. Xia and D. P. Mandic, “Augmented MVDR spectrum-based frequency estimation   for unbalanced power systems,” IEEE Transactions   on Instrumentation and Measurement, vol. 62, no. 7, pp. 1917-1926, 2013.

[36] Y. Xia, S. C. Douglas, and D. P.   Mandic, “Adaptive frequency   estimation in smart grid applications: Exploiting noncircularity and widely   linear adaptive estimators,” IEEE   Signal Processing Magazine, vol. 29, no. 5, pp. 44-54, 2012.

[37] L. Li, Y. Xia, B. Jelfs, J. Cao, and   D. P. Mandic, “Modelling of brain consciousness based on collaborative adaptive   filters,” Neurocomputing, vol. 76, no. 1, pp. 36-43, 2012.

[38] Y. Xia and D. P. Mandic, “Widely   linear frequency estimation of unbalanced three-phase power systems,” IEEE   Transactions on Instrumentation and Measurement, vol. 61, no. 1, pp. 74-83,   2012.

[39] Y. Xia, D. P. Mandic, and A. H.   Sayed, “An adaptive diffusion augmented CLMS algorithm for distributed filtering   of noncircular complex signals,” IEEE Signal Processing Letters, vol. 18, no.   11, pp. 659-662, 2011.

[40] Y. Xia, B. Jelfs, M. M. Van Hull, J.   C. Principe, and D. P. Mandic, “An augmented echo state network

for nonlinear adaptive filtering of complex   noncircular signals,” IEEE Transactions on Neural Networks, vol. 22, no. 1,   pp. 74-83, 2011.

[41] Y. Xia, C. Cheong-Took, and D. P.   Mandic, “An augmented affine projection algorithm for the filtering of   complex noncircular signals,” Signal Processing, vol. 90, no. 6, pp.   1788-1799, 2010.

  

图书专著:

[1] Adaptive Learning Methods for Nonlinear System   Modelling. Chapter 12-Echo State Networks for Multidimensional Data:   Exploiting Noncircularity and Widely Linear Models, Y. Xia, M. Xiang,   Z. Li, and D. P. Mandic, Elsevier, 2018.

[2] Cooperative and Graph Signal   Processing. Chapter 28-Smart Grids: Diffusion Augmented Extended Kalman   Filtering for Adaptive Frequency Estimation in Distributed Power Systems, Y.   Xia, S. Kanna, and D. P. Mandic, Elsevier, 2018.

  

科研项目:

项目名称

项目类别

项目时间

工作类别

项目金额

复数域自适应估计算法的完备性能分析方法及其在宽带多载波I/Q不平衡补偿中的应用

东南大学优秀教师科学研究资助

2019.01-2021.12

应用研究

20

基于非圆复数的自适应滤波算法完备均方性能分析

国家自然科学基金项目

2018.01-2021.12

基础研究

60

基于电压离散傅立叶联合功率谱的非平衡电力系统频率估计技术研究

国家自然科学基金项目

2015.01-2017.12

基础研究

25

基于电压联合周期图最大化的非平衡电力系统频率估计技术研究

江苏省自然科学基金项目

2014.07-2017.06

基础研究

20

高精度频率估计算法研究

教育部基金项目

2015.07-2017.06

基础研究

3

输变电工程数据管理关键技术研究

企事业委托项目

2017.01-2019.12

应用研究

50

基于大数据的配电网中短期电压越限预警及优化治理关键技术研究

企事业委托项目

2017.01-2019.12

应用研究

30

专利:

专利号

专利名称

专利类型

ZL201510098640.5

一种发射机中IQ不平衡的补偿方法和装置

发明专利

ZL201610159351.6

基于虚拟仪器的RFID标签空中接口协议符合性自动化测试方法

发明专利

ZL201610227715.X

基于虚拟仪器的RFID标签一致性测试系统

发明专利

ZL201610137200.0

适用于MIMO-OFDM系统的IQ不平衡和信道联合估计方法

发明专利

ZL201610145766.8

OFDM-WLAN射频测试系统的IQ不平衡估计与补偿方法

发明专利

ZL201610147118.6

一种适用于MIMO-OFDM系统的载波频偏估计方法

发明专利

ZL201611223964.8

一种非平衡电力系统频率估计的方法

发明专利

ZL201610225065.5

一种基于802.11ac射频一致性测试系统接收机的检测方法

发明专利

ZL201610150465.4

MIMO-OFDM WLAN系统的同步方法及系统

发明专利

ZL201710279284.6

基于改进的SmartDFT算法的非平衡系统频率估计算法

发明专利

ZL201711326494.2

一种零中频全双工收发机的数字自干扰消除方法

发明专利

ZL201710126644.9

一种基于外插脉冲响应法实现的快速滤波器组的非均匀数字信道化方法

发明专利

US9995774B2

Frequency estimation

美国发明专利