职称:教授,博导,Ph.D., MSBE, MSEE

办公室:无线谷2301

办公电话:17368703384

Emailwangmao@seu.edu.cn

学习经历:

毕业于东南大学无线电工程系(1984年本科,   1987年研究生)1991年于美国肯塔基大学(University of Kentucky, Lexington, Kentucky, USA)生物医学工程系及Wenner-Gren宇航实验室获生物医学工程(Biomedical Engineering)硕士学位,1995年于美国肯塔基大学电气与计算机工程系获电子与计算机(Electrical and Computer Engineering)博士学位。

工作经历:

19952003年美国摩托罗拉现代无线技术研究中心(MotorolaAdvanced   Radio Technology, Arlington HeightsIllinois USA)任高级研究员。2003年至2015年,在美国高通研究中心(QualcommResearchSan DiegoCalifornia USA)任高级主管研究员,期间(2009年)被授予南京理工大学紫金学者客座教授、博士生导师。2015年底,加入东南大学信息科学与工程学院及移动通信国家重点实验室,任特聘教授、博士生导师。

教授课程:

Fundamentals   of Wireless and Mobile Communications Networks

Modern Communications   and Applications

Wireless   Communication Fundamentals

研究方向:

研究方向为现代无线网络与移动通信理论与技术 (Wireless Networking and Mobile Communications),目前具体研究内容有:宽带无线传输理论与多址接入技术 (wireless multiple access on licensed and   unlicensed spectrum);地面及卫星通信(terrestrial   and satellite communications); 4G LTE5G移动通信   (4G LTE and 5G mobile communications);物联网无线网络(machine-type communication for IoT),包括车辆物联网(vehicular IoT)、海事物联网(maritime IoT)、能源物联网(energy IoT);多输入多输出技术(MIMO networks); 无线通信网络仿真系统(wireless network simulations)

获奖情况:

1995年加入美国摩托罗拉无线技术研究中心起,一直从事现代无线通信理论研究及技术开发。在摩托罗拉无线技术研究中心期间参与了CDMA蜂窝系统(2G   IS-953G   WCDMA)设计,共获二十项美国专利,三次获重大科技发明奖和杰出成就奖(Distinguished Achievement),被授予杰出科技发明家荣誉称号(Distinguished Innovator)。在高通研究中心,进行了MediaFLO多媒体广播系统的研制,成为 TIA1099 Terrestrial Multimedia Multicast国际标准,是该系统的主要贡献者。其后又进行了OFDMA蜂窝系统研发,成为 TIA/3GPP2 Ultra Mobile Broadband Air Interface  IEEE 802.20 Mobile Broadband Wireless Access 两个国际标准,获得近四十项相关美国专利,且在IEEE Transactions/Magazine期刊发表十余篇相关论文,荣获 TIA/3GPP2 Ultra Mobile Broadband Air Interface奖、3GPP2 Ultra Mobile Broadband 成果奖。之后,致力于4G LTE技术的研发,获得二十多项美国专利。

论文著作:

[1]Tingting Xia, Michael Mao Wang,   and Xiaohu You, “Satellite   machine-type communication for maritime Internet of Things: An interference   perspective,” IEEE Access.   (Available under the “Early Access” area on IEEE Xplore.)

[2]Jingjing Zhang, MichaelMao Wang, and Tingting Xia, “Practical synchronization waveform for massive   machine-type communications,” IEEE   Transactions on Communications, vol. 67, no. 2, pp 1467-1479, February   2019.

[3]Jingjing Zhang, Mao Wang,   Min Hua, Tingting Xia, Wenjie Yang, and Xiaohu You, “LTE on license-exempt   spectrum,” IEEE Communications: Surveys   and Tutorials, vol. 20, no. 1, pp 647-673, 2018.

[4]Jingjing Zhang, Mao Wang,   Min Hua, Wenjie Yang, and Xiaohu You, “Robust synchronization waveform design   for massive Internet of Things,” IEEE   Transactions on Wireless Communications, vol. 16, no.11, pp. 7551-7559, November 2017.

[5]Wenjie Yang, Min Hua, Jingjing Zhang, Tingting Xia, Jun Zou, Chengling   Jiang, Mao Wang, “Enhanced system acquisition   for NB-IoT,” IEEE Access, vol.5,   pp.13179-13191, July 2017.

[6]Wenjie Yang, Mao Wang,   Jingjing Zhang, Jun Zou, Min Hua, Tingting Xia, Xiaohu You, “Narrowband   wireless access for low-power massive Internet of Things: A bandwidth   perspective,” IEEE Wireless   Communications, vol.24, no.3, pp138-145, June 2017.

[7]Mao Wang, Jingjing Zhang, Bingying Ren, Wenjie Yang, Jun Zou, Min Hua, Xiaohu   You, “The evolution of LTE physical layer control channels,” IEEE Communications Surveys and Tutorials,   vol. 18, no. 2, pp. 1336-1354, 2016.

[8]Bingying Ren, Mao Wang, Jingjing Zhang, Wenjie   Yang, Jun Zou, Min Hua, Xiaohu You, “Cellular communications on   license-exempt spectrum,” IEEE   Communications Magazine, vol. 54, no. 5, pp. 146-153, May 2016.

[9]Mao Wang, Wenjie Yang, Jun Zou, Bingying Ren, Min Hua, Jingjing Zhang, Xiaohu   You, “Cellular machine-type communications: Physical challenges and   solutions,” IEEE Wireless   Communications, vol. 23, no. 2, pp. 108-117, April 2016.

[10]Kingsley Jun Zou, Kristo Wenjie Yang, Mao Wang, Bingyin Ren, Jason Jinsong Hu, Jingjing Zhang, Min Hua,   Xiaohu You, “Network synchronization for dense small cell networks,” IEEE Wireless Communications, vol. 22,   No. 2, pp.108-117, April 2015.

[11]Min Hua, Mao Wang, Kristo   Wenjie Yang, Kingsley Jun Zou, “Analysis of the frequency offset effect on   Zadoff-Chu sequence timing performance”, IEEE   Transactions on Communications, vol. 62, no. 11, pp. 4024-4039, November   2014.

[12]Kristo Wenjie Yang, Mao Wang,   Kingsley Jun Zou, Min Hua, Jason Jinsong Hu, Jingjing Zhang, Weixing Sheng,   Xiaohu You, “Device discovery for multi-hop cellular networks with its   application in LTE,” IEEE Wireless   Communications, vol. 21, no. 5, pp. 24-34, October 2014.

[13]Chunliang Yang, Jianxin Wang, Mao   Wang, Kingsley Jun Zou, Kristo Wenjie Yang, Min Hua, “Over-the-air   signaling in cellular communication systems,” IEEE Wireless Communications, vol. 21, no. 4, pp. 120-129, August   2014.

[14]Kinsley Jun Zou, Mao Wang,   Kristo Wenjie Yang, Jingjing Zhang, Weixin Sheng, Qian Chen, Xiaohu You,   “Proximity discovery for device-to-device communications over a cellular   network,” IEEE Communications Magazine,   vol. 52, no. 6, pp. 98-107, June 2014.

[15]Chunliang Yang, Mao Wang,   Jianxin Wang, Feng Shu, Xiaohu You, “Single-tone signaling design for   inter-cell interference management with applications to femtocell networks,” IEEE Transactions on Vehicular Technology,   vol. 63, no. 3, pp. 1242-1255, March 2014.

[16]Michael Mao Wang, “Dynamic gain management for on-channel repeaters,” IEEE Transactions on Broadcasting,   vol. 59, no. 4, pp. 685-692, December 2013.

[17]Min Hua, Mao Wang, Kristo   Wenjie Yang, Xiaohu You, Feng Shu, Jianxin Wang, Weixing Sheng, Qian Chen,   “Analysis of the frequency offset effect on random access signals,” IEEE Transactions on Communications,   vol. 61, no. 11, pp. 4728-4740, November 2013.

[18]Kingsley Jun Zou, Mao Wang,   Jingjing Zhang, Feng Shu, Jianxin Wang, Yuwen Qian, Weixing Sheng, Qian Chen,   “Discovery signal design and its application to peer-to-peer communications   in OFDMA cellular networks,” IEEE   Transactions on Wireless Communications, vol. 12, no. 8, pp. 3995-4009,   August 2013.

[19]Chengling Jiang, Michael Mao   Wang, Chunliang Yang, Feng Shu, Jianxin Wang, Weixing Sheng, Qian Chen,   “Multi-user MIMO with limited feedback using alternating codebooks,” IEEE Transactions on Communications,   vol. 60, no. 2, pp. 333-338, February 2012.

[20]Shu Feng, Michael Mao Wang,   Wang Yaxi, Fan Haiqiang, Lu Jinhui, “An Efficient Power Allocation Scheme for   Leakage-based Precoding in Multi-cell Multiuser MIMO Downlink,” IEEE Communications Letters, vol. 15,   no. 10, pp. 1053-1055, October 2011.

[21]Michael Mao Wang, Avneesh Agrawal, Aamod Khandekar, Sandeep Aedudodla, “Preamble   design, system acquisition, and determination in modern OFDMA cellular   Communications: An Overview,” IEEE   Communications Magazine, vol. 49, no. 7, pp. 164-175, July 2011.

[22]Qingchuan Zhang, Feng Shu, Mao   Wang, Jintao Sun, “Relay selection schemes for precoded cooperative OFDM   and their achievable diversity orders,” IEEE   Signal Processing Letters, vol. 18, no. 4, pp. 231-234, April 2011.

[23]Chengling Jiang, Michael Mao   Wang, Feng Shu, Jianxin Wang, Weixing Sheng, Qian Chen, “MIMO precoding   using rotating codebooks,” IEEE   Transactions on Vehicular Technology, 2011, vol. 60, no. 3, pp.   1222-1227, March 2011.

[24]Shu Feng, Mao Wang, Liu   Tingting, “Leakage-based precoding with power allocation for multicellular   multiuser MIMO downlink,” IET   Electronics Letters, vol. 46, no. 24, pp. 1629-1630, November 2010.

[25]Tingting Liu, Mao Wang, Yan   Liang, Feng Shu, Jianxin Wang, Weixin Shen, Qian Chen, “A minimum complexity   high performance channel estimator for MIMO-OFDM communications,” IEEE Transactions on Vehicular Technology,   vol. 59, no. 9, pp. 4634-4639, November 2010.

[26]Tyler Brown, Michael Mao Wang,   “Performance analysis of orthogonal signaling over fast fading channels,” IEEE Transactions on Consumer Electronics,   vol. 56, no. 4, pp. 2067-2071, November 2010.

[27]Michael Mao Wang, Tingfan Ji, “Dynamic resource allocation for interference management   in orthogonal frequency division multiple access cellular communications,” IET Communications,vol. 4, no. 6, pp. 675-682, June   2010.

[28]Michael Mao Wang, Tom Richardson, Ravi Palanki, Alex Gorokhov, “Beacon signaling and   its application to inter-carrier handoff in OFDMA cellular communications,” IEEE Communications Letters, vol.13,   pp.896-898, December 2009.

[29]Michael Mao Wang, Jaber Borron, Tom Richardson, Min Dong, “Interference management and   handoff techniques,” IEEE Vehicular   Technology Magazine, vol. 4, no. 4, pp.64-75, December 2009.

[30]Michael Mao Wang, Lei Xiao, Tyler Brown, Min Dong, “Optimal symbol timing for OFDM   wireless communications,” IEEE Transactions   on Wireless Communications, vol.8, pp.5328-5337, October 2009.

[31]Michael Mao Wang, Tyler Brown, “Optimal blind transport format detection for UMTS   uplink,” IEEE Transactions on   Communications, vol. 56, no. 6, pp. 866-870, June 2008.

[32]Michael Mao Wang, Tyler Brown, Hua Xu, Phil Fleming, “Walsh code assignment and data   structure for variable data rate communications,” IEEE Transactions on Communications, vol.56, no.3, pp. 339-343,   March 2008.

[33]Tyler Brown, and Michael Mao   Wang, “An iterative algorithm for single-frequency estimation,” IEEE Transactions on Signal Processing,   vol.50, pp.2671-2682, November 2002.

[34]Michael Mao Wang, Weimin Xiao, Tyler Brown, “Soft decision metric generation for QAM   with channel estimation error,” IEEE   Transactions on Communications, vol. 50, pp. 1058-1061, July 2002.

[35]Fuyun Ling, Bob Love, Michael   Mao Wang, Tyler Brown, Phil Fleming, Hua Xu, Behavior and   performance of power controlled IS-95 reverse link under soft handoff,” IEEE Transactions on Vehicular Technology,   vol. 49, pp. 1697-1704, September 2000.

[36]Michael Mao Wang, Joyce Evans, Laurence Hassebrook, Charles Knapp, A multistage, optimal active contour model,” IEEE Transactions on Image Processing,   vol. 5, no. 11, pp. 1586-1591, November 1996.

[37]Mao Wang, Joyce Evans, Laurence Hassebrook, Charles Knapp, An   optimized index of human cardiovascular adaptation to simulated   weightlessness,” IEEE   Transactions on Biomedical Engineering, vol.43, pp.502-511, May 1996.

[38]Mao Wang, Joyce Evans, Charles Knapp, Spectral patterns and frequency   response characteristics in heart paced dogs,” IEEE Transactions on Biomedical Engineering, vol.42, pp.708-717,   July 1995.

[39]D. K. Kevenhagen, Joyce M. Evans, Mao   Wang, Charles F. Knapp, “Cardiovascular regulation in humans in response   to oscillatory lower body negative pressure,” American Journal of Physiology, vol. 36, no. 2, pp. H593-H604,   August 1994.

科研项目:

项目名称

项目类别

项目时间

工作类别

项目金额

新能源无线物联网系统研究与开发

  

2018/   1 - 2021/12

  

  

VDES系统通信仿真及协议研究

  

2018/   8 - 2019/ 5

  

  

Sub-GHz非授权频谱关键技术研究

  

2018/12   - 2019/12

  

  

VDES卫星系统通信协议研究

  

2017/   4 - 2017/12

  

  

能源互联网无线通信系统设计及原型开发合作

  

2016/2   - 2017/2

  

  

  

  

  

  

  

专利:

专利号

专利名称

专利类型

US 9985762

Discovery   signals and network synchronization signals design in LTE

发明专利

US 10075266

Data   transmission scheme with unequal code block sizes

发明专利

US 9832629

Discovery   signals and network synchronization signals design in LTE

发明专利

US 9553706

Channel   estimate under non-uniform reference signal pattern

发明专利

US 9356752

Wide area and   local Network ID transmission for communication systems

发明专利

US 9391751

System and   method for frequency diversity

发明专利

US 9277487

Cell   detection with interference cancellation

发明专利

US 9246728

System   and method for frequency diversity

发明专利

US 9038140

Preamble   structure and acquisition for a wireless communication system

发明专利

US 9204379

Preamble   structure and acquisition for a wireless communication system

发明专利

US 9042212

Method and   apparatus for communicating network identifiers in a communication system

发明专利

US 9203466

Acquisition   pilots for wireless communication systems

发明专利

US 9020009

Inserted pilot   construction for an echo cancellation repeater

发明专利

US 9003243

System and   method for modulation diversity

发明专利

US 8948329

Apparatus and   methods for timing recovery in a wireless transceiver

发明专利

US 8934569

Highly   detectable pilot structure

发明专利

US 8929479

Highly   detectable pilot structure

发明专利

US 8929353

Preamble   structure and acquisition for a wireless communication system

发明专利

US 8886115

Gain control   metric pruning in a wireless repeater

发明专利

US 8867987

Gain control   metric computation in a wireless repeater

发明专利

US 8848621

Apparatus and   method for cell-based highly detectable pilot multiplexing

发明专利

US 8837609

Guard   independent signal mapping

发明专利

US 8780767

Methods and   apparatus for including mode information in a frame for system acquisition

发明专利

US 8792865

Method and   apparatus for adjusting packet data content by sending null packets based on   transmitter signal condition or requirement

发明专利

US 8774708

Estimation of   repeater loop delay for repeater gain control

发明专利

US 8711973

Highly   detectable pilot structure

发明专利

US 8687540

Echo   cancellation repeater using an inserted pilot with gain-based power level   control scheme

发明专利

US 8638835

Wireless   repeater implementing multi-parameter gain management

发明专利

US 8644214

Timing   synchronization and channel estimation at a transition between local and wide   area waveforms using a designated TDM pilot

发明专利

US 8630241

Methods and   apparatus for transmitting a frame structure in a wireless communication   system

发明专利

US 8626060

Beacon signals   for repeaters within a wireless communications system

发明专利

US 8611227

Channel   estimation pruning in presence of large signal dynamics in an interference   cancellation repeater

发明专利

US 8548375

Gain control   metric computation in a wireless repeater

发明专利

US 8509859

Apparatus and   methods for control of sleep modes in a transceiver

发明专利

US20130156124

System and   method for frequency diversity

发明专利

US 8463176

Stability   indicator for a wireless repeater

发明专利

US20130235783

Evolved   multimedia broadcast multicast service capacity enhancements

发明专利

US 8452230

Multi-metric   gain control for wireless repeater

发明专利

US 8442146

Apparatus and   methods for reducing channel estimation noise in a wireless transceiver

发明专利

US 8432933

Method for   transmission of time division multiplexed pilot symbols to aid channel   estimation, time synchronization, and AGC bootstrapping in a multicast   wireless system

发明专利

US20130078907

Per carrier   gain control in a multi-carrier repeater

发明专利

US 8396151

Timing   tracking in a multiple receive antenna system

发明专利

US 8391410

Methods and   apparatus for configuring a pilot symbol in a wireless communication system

发明专利

US 8380122

Signal   blanking for improved frequency domain channel estimation

发明专利

US20120263167

Timing and   frequency acquisition for wireless networks

发明专利

US 8285201

Wideband echo   cancellation in a repeater

发明专利

US 8265546

Gain   adjustment stepping control in a wireless repeater

发明专利

US 8223623

Timing and   frequency acquisition for OFDM systems

发明专利

US 8175123

Collection   window positioning using time tracking information

发明专利

US 8144818

Apparatus and   methods for determining timing in a communication system

发明专利

US 8144824

Trend   influenced time tracking

发明专利

US 8009551

Initial pilot   frequency selection

发明专利

US   7948907

Selective   network switching in a wireless broadcast network

发明专利

US   7852822

Wide area and   local network ID transmission for communication systems

发明专利

US   20100284447

Frequency domain   feedback channel estimation for an interference cancellation repeater   including sampling of non-causal taps

发明专利

US   7835460

Apparatus and   methods for reducing channel estimation noise in a wireless transceiver

发明专利

US   7813383

Method for   transmission of time division multiplexed pilot symbols to aid channel   estimation, time synchronization, and AGC bootstrapping in a multicast   wireless system

发明专利

US   7782806

Timing   synchronization and channel estimation at a transition between local and wide   area waveforms using a designated TDM pilot

发明专利

US   7720027

System and   method for a forward link only physical layer

发明专利

US   7693124

Slot-to-interlace   and interlace-to-slot converters for an OFDM system

发明专利

US   7706463

Method and apparatus   for decoding frame packet data in a communication system

发明专利

US   7623607

Methods and   apparatus for determining timing in a wireless communication system

发明专利

US   7583584

System and   method for time diversity

发明专利

US   7573964

Channel   estimator with extended channel bandwidth

发明专利

US   20090116574

Methods and   apparatus for receive power unification for MIMO and non-MIMO signaling

发明专利

US   7529531

Apparatus and   methods for estimating a sleep clock frequency

发明专利

US20090067352

Methods and   apparatus for including mode information in a frame for system acquisition

发明专利

US20080317142

System and   method for frequency diversity

发明专利

US   7463910

Apparatus and   method for determining sleep clock timing

发明专利

US20080002611

Managing null   packets

发明专利

US20070036065

Method and   apparatus for communicating network identifiers in a communication system

发明专利

US7145891

Method and   apparatus to provide desired quality-of-service levels to multiple   communication services

发明专利

US20060233097

Time tracking   for a communication system

发明专利

US   20060123310

System and   method for modulation diversity

发明专利

US   7058039

Method and   apparatus for selecting a modulation and coding scheme in a wireless   communication system

发明专利

US20060109781

System and   method for frequency diversity

发明专利

US   6856644

Method and   apparatus for forward link power control bit generation in a spread-spectrum   communication system

发明专利

US   6834075 B2

Method for   improving multipath searcher speed

发明专利

US   6813736

Blind   transport format detection for communication

发明专利

US   6799024

Method and   apparatus for automatic gain control compensation in a wireless communication   system

发明专利

US   6728304

Method and   apparatus for performing a signal detection and assignment in a wireless   communication system

发明专利

US   6683903

Method and   apparatus for synchronization within a spread-spectrum communication system

发明专利

US   6622278

Method and   apparatus for formatting a message in a wireless communication system

发明专利

US   6580769

Method and   apparatus for backward recursion next state generation in recursive   convolutional decoding

发明专利

US6498805

Apparatus and   method for estimating channel phase using channel symbol reliability data

发明专利

US   6463556

Method and   apparatus for interleaving in a communication system

发明专利

US   6137845

Method of   determining an encoding rate in a communication system

发明专利

US   6125137

Apparatus and   method for performing a signal search in a coherent wireless communication   system

发明专利

US   6108324

Apparatus and   method for performing a signal search in a wireless communication system

发明专利

US   6084904

Method and   apparatus for adjusting a power control setpoint threshold in a wireless   communication system

发明专利

US   5974079

Method and   apparatus for encoding rate determination in a communication system

发明专利

US   5881093

Method of   interleaving a convolutionally coded signal in a spread spectrum   communication system

发明专利

US   5878098

Method and   apparatus for rate determination in a communication system

发明专利

US   5671255

Method and   apparatus for determining coding rate in a wireless communication system

发明专利

DE 69835018

Verfahren zur einstellung der leistungsregelungsschwelle in   einem drahtlosen kommunikationssystem (德国专利)

发明专利