![]() | 职称:教授、博士生导师 | ||||
办公室:无线谷3号楼3202 | |||||
办公电话:025-52091657-202 | |||||
Email:yuxutao@seu.edu.ZL https://github.com/Prof-Xutao-Yu-s-research-group/Quantum-Group | |||||
学习经历: | |||||
2000.9-2004.5 东南大学通信与信息系统博士 1993.7-2000.3 河海大学通信工程学士/硕士 | |||||
工作经历: | |||||
2004.7-至今东南大学信息科学与工程学院毫米波国家重点实验室 | |||||
教授课程: | |||||
微机系统与接口 | |||||
研究方向: | |||||
1.量子计算 2.Quantum Computation for AI/AI for Quantum Computation 3.量子信息与6G技术交叉融合 4. 天线与射频技术 | |||||
获奖情况: | |||||
[1]中国物理学会2016年度最有影响论文奖(排名1); [2]东南大学教学优秀二等奖; [3]2019年教育部技术发明一等奖(排名:4); [4]2024年度,指导学生获得第十九届挑战杯全国大学生课外科技作品大赛揭榜挂帅“量电融合,共创未来——量子经典混合算法的应用探索”专项赛特等奖擂主(该赛道全国第一); [5]2024年度,指导学生获得24th Asian Quantum Information Science Conference学生海报银奖两项; [6]指导学生多次获得国家奖学金、优秀毕业论文等。 | |||||
论文著作(部分): | |||||
[1]Z. T. Li, X. L. He, C. C. C. Zheng, Y. Q. Dong, T. Luan, X. T. Yu, and Z. C. Zhang, "Quantum Comb Tomography via Learning Isometries on Stiefel Manifold", Phys. Rev. Lett., vol. 134, no. 1, p. 010803, Jan. 2025, doi: 10.1103/PhysRevLett.134.010803. [2]Y. Mao, Y. Huang, X. T. Yu et al., "A Novel Group-Parametric Model for RFI Suppression on Spaceborne SAR", IEEE Trans. Geosci. Remote Sensing, vol. 63, pp. 1–14, 2025, doi: 10.1109/TGRS.2024.3508254. [3]J. Xu, Y. J. Zhu, P. Chen, H. Zhang, X. T. Yu, and Z. C. Zhang, "A Wideband Low-Profile Millimeter-Wave Circularly Polarized Array Using Asymmetric Aperture Radiating Element", IEEE Antennas and Wireless Propagation Letters, pp. 1–5, 2025, doi: 10.1109/LAWP.2025.3526423. [4]Z. T. Li, C. C. C. Zheng, F. X. Meng, H. Zeng, T. Luan, Z. C. Zhang, and X. T. Yu, "Non-Markovian Quantum Gate Set Tomography", Quantum Sci. Technol., vol. 9, no. 3, p. 035027, Jul. 2024, doi: 10.1088/2058-9565/ad3d80. [5]Y. X. Liu, Z. C. Zhang, Y. Hu, F. X. Meng, T. Luan, X. C. Zhang, and X. T. Yu, "Practical circuit optimization algorithm for quantum simulation based on template matching", Quantum Inf Process, vol. 23, no. 2, p. 45, Feb. 2024, doi: 10.1007/s11128-023-04252-2. [6]T. Luan, Z. T. Li, C. C. Zheng, X. H. Kuang, X. T. Yu, and Z. C. Zhang, "Quantum Tomography: From Markovianity to Non-Markovianity", Symmetry, vol. 16, no. 2, p. 180, Feb. 2024, doi: 10.3390/sym16020180. [7]Y. Mao, Y. Huang, X. T. Yu et al., "Radio Frequency Interference Mitigation in SAR Systems via Multi-Polarization Framework", IEEE Trans. Geosci. Remote Sensing, vol. 62, pp. 1–16, 2024, doi: 10.1109/TGRS.2024.3384953. [8]X. Y. Tong, J. Xu, X. Y. Xia, H. Zhang, and X. T. Yu, "Ultra-Thin Singly-Fed Dual-Wideband Antenna With Large Frequency Ratio Using a Dual-Mode Feeding Network", Antennas Wirel. Propag. Lett., vol. 23, no. 11, pp. 3644–3648, Nov. 2024, doi: 10.1109/LAWP.2024.3406705. [9]X. Y. Tong, J. Xu, H. Zhang, and X. T. Yu, "An Integrated Microwave and Millimeter-Wave Circularly Polarized Antenna With ISM Band Gain Suppression Performance", Antennas Wirel. Propag. Lett., vol. 23, no. 11, pp. 3649–3653, Nov. 2024, doi: 10.1109/LAWP.2024.3406738. [10]L. Wang, Y. X. Liu, F. X. Meng, T. Luan, W. J. Liu, Z. C. Zhang, and X. T. Yu, "A quantum synthetic aperture radar image denoising algorithm based on grayscale morphology", iScience, vol. 27, no. 5, p. 109627, May 2024, doi: 10.1016/j.isci.2024.109627. [11]L. Wang, Y. X. Liu, F. X. Meng, Z. C. Zhang, and X. T. Yu, "A quantum moving target segmentation algorithm based on mean background modeling", Quantum Inf Process, vol. 23, no. 11, p. 370, Nov. 2024, doi: 10.1007/s11128-024-04578-5. [12]L. Wang, Y. X. Liu, F. X. Meng, W. J. Liu, Z. C. Zhang, and X. T. Yu, "A quantum moving target segmentation algorithm for grayscale video based on background difference method", EPJ Quantum Technol., vol. 11, no. 1, p. 26, Dec. 2024, doi: 10.1140/epjqt/s40507-024-00234-0. [13]H. Zeng, F. X. Meng, T. Luan, X. T. Yu, and Z. C. Zhang, "Improved Quantum Approximate Optimization Algorithm for Low‐Density Parity‐Check Channel Decoding", Adv Quantum Tech, vol. 7, no. 5, p. 2300262, May 2024, doi: 10.1002/qute.202300262. [14]C. C. Zheng, X. T. Yu, and K. Wang, "Cross-platform comparison of arbitrary quantum processes", npj Quantum Inf, vol. 10, no. 1, p. 4, Jan. 2024, doi: 10.1038/s41534-023-00797-3. [15]B. Hu, P. Chen, J. Xu, and X. T. Yu, "Low-Cost Digital Phase-Shifting Technique Using Delta-Sigma Modulation for Satellite Communication Antenna Systems", IEEE Trans. Microwave Theory Techn., vol. 71, no. 2, pp. 842–853, Feb. 2023, doi: 10.1109/TMTT.2022.3205905. [16]Z. T. Li, F. X. Meng, H. Zeng, Z. R. Gong, Z. C. Zhang, and X. T. Yu, "A Gradient‐Cost Multiobjective Alternate Framework for Variational Quantum Eigensolver with Variable Ansatz", Adv Quantum Tech, vol. 6, no. 5, p. 2200130, May 2023, doi: 10.1002/qute.202200130. [17]Z. T. Li, F. X. Meng, H. Zeng, Z. R. Gong, Z. C. Zhang, and X. T. Yu, "Front Cover: A Gradient‐Cost Multiobjective Alternate Framework for Variational Quantum Eigensolver with Variable Ansatz (Adv. Quantum Technol. 5/2023)", Adv Quantum Tech, vol. 6, no. 5, p. 2370051, May 2023, doi: 10.1002/qute.202370051. [18]Y. Mao, Y. Huang, X. T. Yu, Y. Xin, Y. X. Wang, and W. Hong, "An Radio Frequency Interference Mitigation Approach for Spaceborne SAR System in Low SINR Condition", IEEE Trans. Geosci. Remote Sensing, vol. 61, pp. 1–14, 2023, doi: 10.1109/TGRS.2023.3321087. [19]B. Hu, P. Chen, K. Zhang, J. Xu, and X. T. Yu, "A Low-Sidelobe Circularly Polarized Continuous Beam-Scanning Array Using Double-Layer Rotated Structure for Ku -Band Satellite Communications", Antennas Wirel. Propag. Lett., vol. 21, no. 3, pp. 605–609, Mar. 2022, doi: 10.1109/LAWP.2021.3139340. [20]Y. Hu, F. X. Meng, X. J. Wang, T. Luan, Y. L. Fu, Z. C. Zhang, X. C. Zhang, and X. T. Yu, "Greedy algorithm based circuit optimization for near-term quantum simulation", Quantum Sci. Technol., vol. 7, no. 4, p. 045001, Oct. 2022, doi: 10.1088/2058-9565/ac796b. [21]Z. T. Li, F. X. Meng, X. T. Yu, and Z. C. Zhang, "Quantum algorithm for Laplacian eigenmap via Rayleigh quotient iteration", Quantum Inf Process, vol. 21, no. 1, p. 11, Jan. 2022, doi: 10.1007/s11128-021-03347-y. [22]F. X. Meng, Z. T. Li, X. T. Yu, and Z. C. Zhang, "Quantum algorithm for MUSIC-based DOA estimation in hybrid MIMO systems", Quantum Sci. Technol., vol. 7, no. 2, p. 025002, Apr. 2022, doi: 10.1088/2058-9565/ac44dd. [23]Y. H. Ji, F. X. Meng, J. J. Jin, X. T. Yu et al., "Quantum version of MMSE-based massive MIMO uplink detection", Quantum Inf Process, vol. 19, no. 2, p. 67, Feb. 2020, doi: 10.1007/s11128-019-2547-4. [24]Z. T. Li, F. X. Meng, Z. C. Zhang, and X. T. Yu, "Qubits" mapping and routing for NISQ on variability of quantum gates", Quantum Inf Process, vol. 19, no. 10, p. 378, Oct. 2020, doi: 10.1007/s11128-020-02873-5. [25]F. X. Meng, X. T. Yu, and Z. C. Zhang, "Quantum algorithm for multiple signal classification", Phys. Rev. A, vol. 101, no. 1, p. 012334, Jan. 2020, doi: 10.1103/PhysRevA.101.012334. [26]F. X. Meng, X. T. Yu, and Z. C. Zhang, "Improved quantum algorithm for MMSE-based massive MIMO uplink detection", Quantum Inf Process, vol. 19, no. 8, p. 267, Aug. 2020, doi: 10.1007/s11128-020-02768-5. [27]H. Du, X. T. Yu, H. Zhang, and P. Chen, "Design of broadband and dual‐polarized dielectric‐filled pyramidal horn antenna based on substrate‐integrated waveguide", Micro & Optical Tech Letters, vol. 61, no. 3, pp. 702–708, Mar. 2019, doi: 10.1002/mop.31641. [28]H. Du, X. T. Yu, H. Zhang, and P. Chen, "A low phase noise oscillator based on substrate integrated coaxial line technology", Journal of Electromagnetic Waves and Applications, vol. 33, no. 4, pp. 409–418, Mar. 2019, doi: 10.1080/09205071.2018.1531728. [29]F. X. Meng, X. T. Yu, R. Q. Xiang, and Z. C. Zhang, "Quantum Algorithm for Spectral Regression for Regularized Subspace Learning", IEEE Access, vol. 7, pp. 4825–4832, 2019, doi: 10.1109/ACCESS.2018.2886581. [30]K. Wang, R. Cai, X. T. Yu, and Z. C. Zhang, "Quantum Handshake Beacon in Communication System Using Bidirectional Quantum Teleportation", Int J Theor Phys, vol. 58, no. 1, pp. 121–135, Jan. 2019, doi: 10.1007/s10773-018-3916-y. [31]X. J. Wang, L. X. An, F. X. Meng, X. T. Yu, and Z. C. Zhang, "A Multicast Scheme Based on Fidelity Metrics in Quantum Networks", IEEE Access, vol. 7, pp. 65703–65713, 2019, doi: 10.1109/ACCESS.2019.2915931. [32]X. J. Wang, J. Zhao, F. X. Meng, X. T. Yu, and Z. C. Zhang, "MMSE detection method in uplink massive MIMO systems based on quantum computing", Physics Letters A, vol. 383, no. 12, pp. 1268–1273, Apr. 2019, doi: 10.1016/j.physleta.2019.01.040. [33]R. Zeng, T. J. Liu, X. T. Yu, and Z. C. Zhang, "Novel Channel Quality Indicator Prediction Scheme for Adaptive Modulation and Coding in High Mobility Environments", IEEE Access, vol. 7, pp. 11543–11553, 2019, doi: 10.1109/ACCESS.2019.2892228. [34]R. Cai, X. T. Yu, and Z. C. Zhang, "Bidirectional Teleportation Protocol in Quantum Wireless Multi-hop Network", Int J Theor Phys, vol. 57, no. 6, pp. 1723–1732, Jun. 2018, doi: 10.1007/s10773-018-3698-2. [35]H. Du, X. T. Yu, H. Zhang, and P. Chen, "A method to improve phase noise of oscillator based on triangular SIW resonators", Micro & Optical Tech Letters, vol. 60, no. 5, pp. 1251–1256, May 2018, doi: 10.1002/mop.31140. [36]S. Y. Ling, Z. C. Zhang, P. Chen, H. Zhang, and X. T. Yu, "Silicon nitride waveguide integrated with cross bowtie nanoplasmonic antenna for tunable dipole plasmon resonance and maximum local field enhancement", Opt. Eng., vol. 57, no. 11, p. 1, Nov. 2018, doi: 10.1117/1.OE.57.11.117108. [37]K. Wang, X. T. Yu, X. F. Cai, and Z. C. Zhang, "Probabilistic Teleportation of Arbitrary Two-Qubit Quantum State via Non-Symmetric Quantum Channel", Entropy, vol. 20, no. 4, p. 238, Mar. 2018, doi: 10.3390/e20040238. [38]K. Wang, X. T. Yu, and Z. C. Zhang, "Two-qubit entangled state teleportation via optimal POVM and partially entangled GHZ state", Front. Phys., vol. 13, no. 5, p. 130320, Oct. 2018, doi: 10.1007/s11467-018-0832-9. [39]X. Z. Zhou, X. T. Yu, and Z. C. Zhang, "Multi-Hop Teleportation of an Unknown Qubit State Based on W States", Int J Theor Phys, vol. 57, no. 4, pp. 981–993, Apr. 2018, doi: 10.1007/s10773-017-3631-0. [40]X. Z. Zhou, X. T. Yu, and Z. C. Zhang, "Capacity of a continuously distributed quantum network", Phys. Rev. A, vol. 98, no. 1, p. 012316, Jul. 2018, doi: 10.1103/PhysRevA.98.012316. [41]Z. Z. Zou, X. T. Yu, and Z. C. Zhang, "Quantum connectivity optimization algorithms for entanglement source deployment in a quantum multi-hop network", Front. Phys., vol. 13, no. 2, p. 130202, Apr. 2018, doi: 10.1007/s11467-017-0721-7. [42]X. Q. Gao, Z. C. Zhang, Y. X. Gong, B. Sheng, and X. T. Yu, "Teleportation of entanglement using a three-particle entangled W state", J. Opt. Soc. Am. B, vol. 34, no. 1, p. 142, Jan. 2017, doi: 10.1364/JOSAB.34.000142. [43]X. J. Wang, L. X. An, X. T. Yu, and Z. C. Zhang, "Multilayer quantum secret sharing based on GHZ state and generalized Bell basis measurement in multiparty agents", Physics Letters A, vol. 381, no. 38, pp. 3282–3288, Oct. 2017, doi: 10.1016/j.physleta.2017.08.032. [44]Z. Z. Zou, X. T. Yu, Y. X. Gong, and Z. C. Zhang, "Multihop teleportation of two-qubit state via the composite GHZ–Bell channel", Physics Letters A, vol. 381, no. 2, pp. 76–81, Jan. 2017, doi: 10.1016/j.physleta.2016.10.048. [45]P. Y. Xiong, X. T. Yu, Z. C. Zhang, H. T. Zhan, and J. Y. Hua, "Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state", Frontiers of Physics, vol. 12, no. 4, p. 120302, Oct. 2016, doi: 10.1007/s11467-016-0617-y. [46]H. T. Zhan, X. T. Yu, P. Y. Xiong, and Z. C. Zhang, "Multi-hop teleportation based on W state and EPR pairs", Chinese Phys. B, vol. 25, no. 5, p. 050305, May 2016, doi: 10.1088/1674-1056/25/5/050305. [47]P. Y. Xiong, X. T. Yu, H. T. Zhan, and Z. C. Zhang, "Multiple teleportation via partially entangled GHZ state", Frontiers of Physics, vol. 11, no. 4, p. 110303, Feb. 2016, doi: 10.1007/s11467-016-0553-x. [48]P. Chen, Y. X. Cai, X. F. Cai, L. H. Shi, and X. T. Yu, “Quantum channel establishing rate model of quantum communication network based on entangled states”, Acta Physica Sinica, vol. 64, no. 4, pp. 040301-040301, 2015, doi: 10.7498/aps.64.040301. [49]J. Y. Hua, J. F. Yang, W. D. Lu, L. M. Meng, and X. T. Yu, "Design of Universal Wireless Channel Generator Accounting for the 3-D Scatter Distribution and Hardware Output", IEEE Trans. Instrum. Meas., vol. 64, no. 1, pp. 2–13, Jan. 2015, doi: 10.1109/TIM.2014.2340611. [50]L. H. Shi, X. T. Yu, X. F. Cai, Y. X. Gong, and Z. C. Zhang, "Quantum information transmission in the quantum wireless multihop network based on Werner state", Chinese Phys. B, vol. 24, no. 5, p. 050308, May 2015, doi: 10.1088/1674-1056/24/5/050308. [51]X. F. Cai, X. T. Yu, L. H. Shi, and Z. C. Zhang, "Partially entangled states bridge in quantum teleportation", Front. Phys., vol. 9, no. 5, pp. 646–651, Oct. 2014, doi: 10.1007/s11467-014-0432-2. [52]K. Wang, Y. X. Gong, X. T. Yu, and S. L. Lu, "Addendum to ‘Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation’", Phys. Rev. A, vol. 90, no. 4, p. 044302, Oct. 2014, doi: 10.1103/PhysRevA.90.044302. [53]K. Wang, X. T. Yu, S. L. Lu, and Y. X. Gong, "Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation", Phys. Rev. A, vol. 89, no. 2, p. 022329, Feb. 2014, doi: 10.1103/PhysRevA.89.022329. [54]X. T. Yu, Z. C. Zhang, and J. Xu, "Distributed wireless quantum communication networks with partially entangled pairs", Chinese Phys. B, vol. 23, no. 1, p. 010303, Jan. 2014, doi: 10.1088/1674-1056/23/1/010303. [55]X. T. Yu, J. Xu, and Z. C. Zhang, "Distributed wireless quantum communication networks", Chinese Phys. B, vol. 22, no. 9, p. 090311, Sep. 2013, doi: 10.1088/1674-1056/22/9/090311. [56]X. T. Yu, X. Fang, and Z. C. Zhang, "Joint Link Allocation and Rate Assignment Algorithm for Multi-Channel Wireless Networks", Wireless Communication over ZigBee for Automotive Inclination Measurement. China Communications, vol. 9, pp. 96–106, Sep. 2012. [57]X. T. Yu, J. Xu, and Z. C. Zhang, "Routing protocol for wireless ad hoc quantum communication network based on quantum teleportation", Acta Physica Sinica, vol. 61, no. 22, pp. 50-57, 2012. | |||||
科研项目(部分): | |||||
项目名称 | 项目类别 | 项目时间 | 工作类别 | ||
含噪中等规模量子设备非稳态噪声缓解关键技术研究 | 自然科学基金面上项目 | 2025.01-2028.12 | 主持 | ||
自然科学基金面上项目 | 2019.01-2022.12 | 主持 | |||
无线通信网络多信道协议的研究 | 国家自然科学基金青年基金项目 | 2010.01-2012.12 | 主持 | ||
超宽带设备的技术规范和性能评测 | 国家重大科技专项子课题 | 2009.01-2010.12 | 子课题负责人 | ||
具有复杂结构的无线量子通信网络体系构架研究与验证 | 江苏省产学研项目 | 2014.01-2015.12 | 主持 | ||
发明专利授权(部分): | |||||
专利号 | 专利名称 | 专利类型 | |||
ZL202211647142.8 | 一种用于量子神经网络结构优化的抽样方法及相关装置 | 发明专利授权 | |||
ZL202211632717.9 | 一种量子线路优化方法、装置、设备及存储介质 | 发明专利授权 | |||
ZL202210713389.9 | 一种用于量子信息编码的方法 | 发明专利授权 | |||
ZL202210698044.0 | 一种用于计算希尔伯特-施密特检验的方法 | 发明专利授权 | |||
ZL202111663342.8 | 一种扩频通信频偏纠正方法、装置、设备和介质 | 发明专利授权 | |||
ZL202110981529.6 | 一种基于量子生成对抗网络的信道建模方法 | 发明专利授权 | |||
ZL202110760323.0 | 一种多约束毫米波车载MIMO雷达天线阵列设计方法与装置 | 发明专利授权 | |||
ZL202110660455.6 | 一种毫米波车载MIMO雷达天线阵列装置及设计方法 | 发明专利授权 | |||
ZL202110534261.1 | 一种利用数字开关方式实现精密移相的方法 | 发明专利授权 | |||
ZL202110533387.7 | 一种双层扇形旋转结构的低副瓣扫描天线及卫星通信系统 | 发明专利授权 | |||
ZL202110422799.3 | 用于射频链路的幅度相位快速校准的宽带近场测量系统及方法 | 发明专利授权 | |||
ZL202110382648.X | 一种低相位噪声的宽带压控振荡器 | 发明专利授权 | |||
ZL202110318825.8 | 一种基于量子计算的最小均方误差检测方法 | 发明专利授权 | |||
ZL202110311886.1 | 一种量子计算的克莱姆-斯密特正交化方法 | 发明专利授权 | |||
ZL202110259919.2 | 一种任意曲面阵的波束控制机构的控制方法 | 发明专利授权 | |||
ZL202011543233.8 | 一种轻小型卫星通信便携站 | 发明专利授权 | |||
ZL202011442258.9 | 一种宽频带高本振抑制度的调制器 | 发明专利授权 | |||
ZL202010989942.2 | 一种用于量子编译的线路变换方法 | 发明专利授权 | |||
ZL202010644954.1 | 一种毫米波数控振荡器的可变电容器及其制备方法 | 发明专利授权 | |||
ZL202010454792.5 | 一种圆形多波束相控阵列天线及通信方法 | 发明专利授权 | |||
ZL202010127978.X | 通用量子比较电路的实现方法 | 发明专利授权 | |||
ZL201911147034.2 | 一种高隔离度悬置微带线平衡馈电的双极化宽带天线阵列 | 发明专利授权 | |||
ZL201910967810.7 | 一种基于量子禁忌搜索算法的波束赋形码本搜索方法 | 发明专利授权 | |||
ZL201910323636.2 | 一种小型化Ku全频段卫星天线阵列 | 发明专利授权 | |||
ZL201910025368.6 | 一种提高相位分辨率的参考移相器及移相方法 | 发明专利授权 | |||
ZL201910025382.6 | 一种量子通信网络中基于保真度度量的多播路由方法 | 发明专利授权 | |||
ZL201811501783.6 | 一种基于量子计算的最小均方误差检测方法 | 发明专利授权 | |||
ZL201810768625.0 | 一种低相噪宽频带微波频率源电路 | 发明专利授权 | |||
ZL201810377520.2 | 一种Ku频段平衡馈电双频双极化介质喇叭天线 | 发明专利授权 | |||
ZL201810089124.X | 一种应用于Ku频段卫星通信的对馈行波式C字型波导天线阵 | 发明专利授权 | |||
ZL201711443637.8 | 一种光子集成电路中双领结金属纳米光学天线 | 发明专利授权 | |||
ZL201711225445.X | 一种光子集成电路中八边形金属纳米光学天线 | 发明专利授权 | |||
ZL201711061442.7 | 一种低相位噪声基片集成波导振荡器 | 发明专利授权 | |||
ZL201711061443.1 | 一种宽带小型化基片集成同轴线压控谐振器 | 发明专利授权 | |||
ZL201710638302.5 | 一种分层量子信息分发方法 | 发明专利授权 | |||
ZL201710378427.9 | 提高量子通信网络连通性的纠缠粒子对分发节点部署方法 | 发明专利授权 | |||
ZL201611163869.3 | 一种量子通信中纠缠粒子对分发节点的位置分布方法 | 发明专利授权 | |||
ZL201610876796.6 | 一种基于Mesh结构的量子通信网络的路由方法 | 发明专利授权 | |||
ZL201610721412.3 | 一种网格结构量子通信网络的路由方法 | 发明专利授权 | |||
ZL201610539806.7 | 一种多跳传输二粒子纠缠态的方法 | 发明专利授权 | |||
ZL201510875741.9 | 一种填充BST材料的共面波导结构移相器单元及移相方法 | 发明专利授权 | |||
ZL201510549517.0 | 一种用于量子Mesh网络的路由方法 | 发明专利授权 | |||
ZL201510239520.2 | 用于部分纠缠量子对桥接通信网络的路由方法 | 发明专利授权 | |||
ZL201510213182.5 | 一种小型化的多波束天线阵列及与其连接的网络合路 | 发明专利授权 | |||
ZL201510183690.3 | 用于基于纠缠态的无线Mesh量子通信网络的路由方法 | 发明专利授权 |